100+y^2=225

Simple and best practice solution for 100+y^2=225 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100+y^2=225 equation:



100+y^2=225
We move all terms to the left:
100+y^2-(225)=0
We add all the numbers together, and all the variables
y^2-125=0
a = 1; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·1·(-125)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*1}=\frac{0-10\sqrt{5}}{2} =-\frac{10\sqrt{5}}{2} =-5\sqrt{5} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*1}=\frac{0+10\sqrt{5}}{2} =\frac{10\sqrt{5}}{2} =5\sqrt{5} $

See similar equations:

| 10.81÷2.3=x | | 36+y^2=225 | | 25+y^2=225 | | 4+y^2=225 | | a+2=77 | | x-6+x=2 | | 90+9x+16+5x-14=180 | | 25x-18=5x+32 | | 3/7d=5/7 | | 0.15x-0.3=2.7+0.75x | | -2.7x=0.4=2.8-1.2x | | 5^(2x)=28 | | 236+2x=360 | | 16t-2t=t+9+4t | | 3x+138=180 | | 1x=7-0.5 | | 15x-30=27+75x | | Y=3x-5=-3x+7 | | 2^3x=8^6+4x | | (D^4+5D^2+6)y=0 | | 3h+7=25 | | 0.9x-1.2=1-0.2x | | x^​2+9x-22=0 | | 3(n+5)=n+29 | | 12-6x=2x+4 | | 2(m-7)=16 | | 9x-8+55=90 | | 11x-15=3x-7 | | 8x=x+210 | | 8x=x+10 | | 2^3x=3^2x+1 | | 5x-7=x-(2x+1) |

Equations solver categories